Fwci07dmzm7r4zdbem6d
SkillsCast

Graph-Powered Machine Learning

28th February 2018 in London at CodeNode

There are 1 other SkillsCast available from Machine Learning and Graphs X 2

Graph-based machine learning is becoming an important trend in Artificial Intelligence, transcending a lot of other techniques.

Using graphs as basic representation of data for ML purposes has several advantages: (i) the data is already modeled for further analysis, explicitly representing connections and relationships between things and concepts; (ii) graphs can easily combine multiple sources into a single graph representation and learn over them, creating Knowledge Graphs; (iii) improving computation performances and quality. The talk will discuss these advantages and present applications in the context of recommendation engines and natural language processing.

YOU MAY ALSO LIKE:

Thanks to our sponsors

Graph-Powered Machine Learning

Dr. Alessandro Negro

Alessandro has been a long-time member of the graph community and he is the main author of the first-ever recommendation engine based on Neo4j. At GraphAware, he specialises in recommendation engines, graph-aided search, and NLP. He has recently built an application using Neo4j and Elasticsearch aimed at personalising search results, utilizing several machine learning algorithms, natural language processing and ontology hierarchy. Before joining the team, Alessandro has gained over 10 years of experience in software development and spoke at many prominent conferences, such as JavaOne. Alessandro holds a Ph.D. in Computer Science from University of Salento.

SkillsCast

Graph-based machine learning is becoming an important trend in Artificial Intelligence, transcending a lot of other techniques.

Using graphs as basic representation of data for ML purposes has several advantages: (i) the data is already modeled for further analysis, explicitly representing connections and relationships between things and concepts; (ii) graphs can easily combine multiple sources into a single graph representation and learn over them, creating Knowledge Graphs; (iii) improving computation performances and quality. The talk will discuss these advantages and present applications in the context of recommendation engines and natural language processing.

YOU MAY ALSO LIKE:

Thanks to our sponsors

About the Speaker

Graph-Powered Machine Learning

Dr. Alessandro Negro

Alessandro has been a long-time member of the graph community and he is the main author of the first-ever recommendation engine based on Neo4j. At GraphAware, he specialises in recommendation engines, graph-aided search, and NLP. He has recently built an application using Neo4j and Elasticsearch aimed at personalising search results, utilizing several machine learning algorithms, natural language processing and ontology hierarchy. Before joining the team, Alessandro has gained over 10 years of experience in software development and spoke at many prominent conferences, such as JavaOne. Alessandro holds a Ph.D. in Computer Science from University of Salento.